首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   87篇
  2023年   11篇
  2022年   5篇
  2021年   35篇
  2020年   23篇
  2019年   27篇
  2018年   51篇
  2017年   45篇
  2016年   71篇
  2015年   83篇
  2014年   92篇
  2013年   133篇
  2012年   97篇
  2011年   111篇
  2010年   69篇
  2009年   51篇
  2008年   56篇
  2007年   74篇
  2006年   72篇
  2005年   46篇
  2004年   42篇
  2003年   52篇
  2002年   47篇
  2001年   9篇
  2000年   7篇
  1999年   7篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   3篇
  1969年   2篇
排序方式: 共有1381条查询结果,搜索用时 474 毫秒
21.
Hereditary nephrotic syndrome is caused by mutations in a number of different genes, the most common being NPHS2. The aim of the study was to identify the spectrum of NPHS2 mutations in Polish patients with the disease. A total of 141 children with steroid-resistant nephrotic syndrome (SRNS) were enrolled in the study. Mutational analysis included the entire coding sequence and intron boundaries of the NPHS2 gene. Restriction fragment length polymorphism (RFLP) and TaqMan genotyping assay were applied to detect selected NPHS2 sequence variants in 575 population-matched controls. Twenty patients (14 %) had homozygous or compound heterozygous NPHS2 mutations, the most frequent being c.1032delT found in 11 children and p.R138Q found in four patients. Carriers of the c.1032delT allele were exclusively found in the Pomeranian (Kashubian) region, suggesting a founder effect origin. The 14 % NPHS2 gene mutation detection rate is similar to that observed in other populations. The heterogeneity of mutations detected in the studied group confirms the requirement of genetic testing the entire NPHS2 coding sequence in Polish patients, with the exception of Kashubs, who should be initially screened for the c.1032delT deletion.  相似文献   
22.
Biological inventory is a crucial activity in life sciences field research. However, it is sometimes time-consuming and laborious to take representative samplings of communities, especially in the case of invertebrates. In this paper, we address the issue of sampling efficiency and its influence on obtained results. As a study system, we used data on epigeic carabid beetles (Carabidae) collected in 1999–2001 in the Warta River valley of western Poland. We trapped a total of 17,722 individuals belonging to 108 species. However, due to rarefaction methods, the expected number of species was estimated at 134–140, suggesting that from 26 to 32 species are missing from the material, even expressed as a huge number of collected specimens. The estimated probability that another captured individual will represent a new species (i.e. a species that was not already recorded) is 0.0010. In order to record all the species present in the study area, another 193,338 individuals need to be sampled (abundance-based approach) or another 1,871 samples need to be collected (incidence-based approach). This means that the collected material should be 10.9 times greater (or 7.9 times greater for incidence-based data) than what was actually collected in order to record all the species present in the study area. The results show that, in practice, full inventory is simply nearly impossible to achieve, and this knowledge should be included in inventory planning. Therefore, we argue that species accumulation curves and unseen species estimators need to be carefully examined and threshold probability of detecting a new species should be built into the design of inventory science. The ratio between recorded and estimated species richness and the estimated efficiency of further sampling can be easily computed with available freeware software and should be incorporated when performing biological inventories.  相似文献   
23.
24.
25.
Plant interactions with environmental factors cause changes in the metabolism and regulation of biochemical and physiological processes. Plant defense against pathogenic microorganisms depends on an innate immunity system that is activated as a result of infection. There are two mechanisms of triggering this system: basal immunity activated as a result of a perception of microbe-associated molecular patterns through pattern recognition receptors situated on the cell surface and effector-triggered immunity (ETI). An induced biosynthesis of bioactive secondary metabolites, in particular phytoalexins, is one of the mechanisms of plant defense to fungal infection. Results of the study on narrow leaf lupin (Lupinus angustifolius L.) plants infected with the anthracnose fungus Colletotrichum lupini and treated with fungal phytotoxic metabolites are described in the paper. The C. lupini phytotoxins were isolated from liquid cultures, purified and partially characterized with physicochemical methods. Accumulation of secondary metabolites on leaf surface and within the tissues of plants either infected, treated with the fungal phytotoxin or submitted to both treatments was studied using GC-MS and LC-MS, respectively. Substantial differences in isoflavone aglycones and glycoconjugate profiles occurred in response to different ways of plant treatment.  相似文献   
26.
27.
Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.  相似文献   
28.
Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.  相似文献   
29.
Previously we identified Rrp1 and Rrp2 as two proteins required for the Sfr1/Swi5-dependent branch of homologous recombination (HR) in Schizosaccharomyces pombe. Here we use a yeast two-hybrid approach to demonstrate that Rrp1 and Rrp2 can interact with each other and with Swi5, an HR mediator protein. Rrp1 and Rrp2 form co-localizing methyl methanesulphonate–induced foci in nuclei, further suggesting they function as a complex. To place the Rrp1/2 proteins more accurately within HR sub-pathways, we carried out extensive epistasis analysis between mutants defining Rrp1/2, Rad51 (recombinase), Swi5 and Rad57 (HR-mediators) plus the anti-recombinogenic helicases Srs2 and Rqh1. We confirm that Rrp1 and Rrp2 act together with Srs2 and Swi5 and independently of Rad57 and show that Rqh1 also acts independently of Rrp1/2. Mutants devoid of Srs2 are characterized by elevated recombination frequency with a concomitant increase in the percentage of conversion-type recombinants. Strains devoid of Rrp1 or Rrp2 did not show a change in HR frequency, but the number of conversion-type recombinants was increased, suggesting a possible function for Rrp1/2 with Srs2 in counteracting Rad51 activity. Our data allow us to propose a model placing Rrp1 and Rrp2 functioning together with Swi5 and Srs2 in a synthesis-dependent strand annealing HR repair pathway.  相似文献   
30.
The aim of this study was to compare the spread of multidrug-resistant (MDR) and methicillin-resistant (MR) staphylococci in healthy dogs and in dogs with evident symptoms of infection. The samples from 172 healthy and 197 infected dogs were examined. The staphylococci were identified with conventional methods and by means of the polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method (MboI). Susceptibility to 15 antibiotics from 10 different antimicrobial classes was tested. Resistance to methicillin was confirmed by the presence of Staphylococcus aureus mecA and S. sciuri mecA genes. Multidrug resistance was defined as resistance to three or more antimicrobial classes. The oral mucosa to be the most frequent site of staphylococcal colonization (55.8 %), followed by nasal cavity (44.2 %), and anus (32.6 %). The prevalence of MDR staphylococci in infected dogs was significantly higher than in the healthy animals (74/137 vs. 34/95, P = 0.006). The MR strains of S. pseudintermedius (2.9 %) originated solely from infected dogs. In contrast, the MR coagulase-negative strains (7.4 %) were isolated solely from healthy dogs. S. aureus strains originated from nasal swabs, MRSA strains were not isolated. MDR staphylococci and MR S. pseudintermedius are more common among infected dogs, but coagulase-negative staphylococci (mostly S. sciuri) seem to be a reservoir of methicillin resistance in healthy dogs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号